



# 面向可穿戴电子的微能源技术开发 Development of micro energy for wearable electronics

### Dr. Zhengxin Liu, VP, SITRI

上海微技术工业研究院 (SITRI)





### Integration of micro energy system

# Approaches at SITRI







Smart ...



Hearing Aids



Mobile Phone



Life Vest



**Smart Glass** 

Activity Monitor

Smart Watch



#### Smart Shoes

#### Wearable ...





perty of SITRI and may not be duplicated, disclosed to any third party, or used for any purpose other than that for which it is supplied without the written consent of SITRI.



### ≻Lifetime: replace, charge ...



# ➢Flexibility

# ≻Environment issues: pollution, recycle, ...





### **Solutions:**

- Get energies from the environment --- Battery life
- Microminiaturization
- flexible

### composition of micro energy system for wearable electronics





# Power generator:Solar powered well-clock



### Solar cells



### **Solar powered watches**







Solar powered watch

#### Silicon Labs solar energy source

### >Thermoelectric generator



KAST flexible thermoelectric generator

Weight: 0.13g/cm<sup>2</sup> Size: 10cm×10cm Power: 40mW

#### piezoelectric generator



Measurement Specialties piezoelectric generator



### Wireless charging



#### Remote wireless charging



### **Comparation of wireless charging technology**

| Wireless Charging<br>Technologies | Advantages                                  | Shortages                                                |
|-----------------------------------|---------------------------------------------|----------------------------------------------------------|
| Electromagnetic induction         | simple principle, easy fabrication          | limited transmitting range                               |
| Magnetic resonance                | long transmitting range,<br>high efficiency | difficult to make frequency modulation                   |
| Light / Laser                     | long transmitting range                     | easy to be blocked                                       |
| Wifi                              | charging anywhere                           | difficult to locate charging objects, energy dissipation |



### **Selection of micro energy**

| Energy        | Characteristics     |                    | Power                                                                                                                                             |                            |
|---------------|---------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Light         | Outdoors            |                    | $100 \text{ mW/cm}^2$                                                                                                                             |                            |
| Light         | Indoors             |                    | $100 \text{ uW/cm}^2$                                                                                                                             |                            |
| Thormal       | Human body          |                    | $60 \text{ uW/cm}^2$                                                                                                                              |                            |
| Therman       | Industry            |                    | 1~100 mW/cm <sup>2</sup>                                                                                                                          |                            |
| Vibration     | Hz - Human b        | oody               | ~4 uW/cm <sup>3</sup>                                                                                                                             |                            |
| vibration     | kHz - Machin        | e                  | ~800 uW/cm <sup>3</sup>                                                                                                                           |                            |
| RF            | GSM 900MHz          |                    | $0.1 \text{ uW/cm}^2$                                                                                                                             |                            |
|               | Wifi                |                    | 0.001 uW/cm <sup>2</sup>                                                                                                                          |                            |
| Watch<br>~5uW | LCD clock<br>~500uW | headphone<br>~40mW | Smart phone<br>~1W                                                                                                                                |                            |
|               | 17:30 280           |                    |                                                                                                                                                   |                            |
| 1uW           | 1mW                 | 10<br>The int      | OmW 1W<br>ormation in the presentation is the property of SITRI and may not<br>used for any purpose other than that for which it is subplied with | be duplicat<br>out the wri |

### **Power management circuits**

### Ultra low power



#### **Power storage devices**

Solid cells

### high-capacity, Small size, flexible



Sakti3 sample





Prologium Lithium-Ceramic solide entry of strate and may not be duplicated, disclosed to any third

### Flexible micromation super capacitor

Fiber type supercapacitor



Fabricated by a pair fiber with power density of 6.3uWh/mm<sup>3</sup>

#### Graphene-based planar micro-supercapacitors



the fabrication process for LSG-MSCs

EI-Kady, et al. Nat Commun 2013; 4: 1475.



# all-solid-state interdigital graphene-based MSCs integrated onto a silicon wafer

Wu, et al. Nat Commun 2013; 4: 2487.

wiv third

party, or used for any purpose other than that for which it is supplied without the written consent of SITRI.

# Approaches at SITRI

#### Thin, pseudo-flexible, high-efficiency HIT solar cell in SIMIT





| and the second |                 |                                |
|------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------|
| Date :                                                                                                           | 2015/2/20       | D                              |
| Type:                                                                                                            | 125 thick       |                                |
| Sample No. :                                                                                                     | SIMIT-125       | i-thick-1                      |
| Repeat Times. :                                                                                                  | 10              | <i>4</i> 2                     |
| Isc                                                                                                              | 5.89            | [A]                            |
| Voc                                                                                                              | 0.732           | [\]                            |
| Pmax                                                                                                             | 3.45            | [W]                            |
| Ipmax                                                                                                            | 5.54            | [A]                            |
| Vpmax                                                                                                            | 0.624           | [V]                            |
| F.F.                                                                                                             | 80.2            | [%]                            |
| Eff.(T) (*)                                                                                                      | 22.0            | [%]                            |
| M.Temp                                                                                                           | 25.0            | [°C]                           |
| D Irr.                                                                                                           | 100.0           | [mW/cm <sup>2</sup> ]          |
| M Irr.                                                                                                           | 99.5            | [mW/cm <sup>2</sup> ]          |
| Ref. Device N                                                                                                    | lo.<br>JETp-C01 | w                              |
| Cal Val Of R                                                                                                     | ef              |                                |
|                                                                                                                  | 123.21          | [mA at 100mW/cm <sup>2</sup> ] |
| Scan Mode                                                                                                        |                 |                                |
|                                                                                                                  | Isc to Voc      |                                |
|                                                                                                                  |                 |                                |



Eff>22%, t=100um

# Flexible (paper) battery







### Integration of micro energy system

Combination of thin film solar cell and thin film battery





### **Challenges:**

- High efficiency power generator
- ULP power management circuits
- High performance power storage system
- Size of energy collection system (portable, micromation, integration)

### Cost

